При какой температуре расплавляется лед. При какой температуре тает лед? Количество теплоты для нагревания льда. График плавления льда

При достижении твердым телом температуры плавления дальнейшего повышения его температуры не происходит, а подводимая (или отводимая) тратится на изменение - превращение твердого тела в жидкость (при отводе теплоты - из жидкости в твердое тело).

Температура плавления (затвердевания) зависит от вида вещества и давления окружающей среды.
При атмосферном давлении (760 мм рт. ст.) температура плавления водного льда равна 0°С. Количество теплоты, необходимое для превращения 1 кг льда в воду (или наоборот), называется скрытой или удельной теплотой плавления r. Для водного льда r=335 кДж/кг.
Количество теплоты, необходимое для превращения льда массой М в воду, определяют по формуле: Q=Mr .
Из сказанного следует, что одним из способов искусственного охлаждения является отвод теплоты за счет плавления вещества в твердом состоянии при низкой температуре.

На практике этот способ давно и широко применяют, осуществляя охлаждение с помощью заготовленного зимой с использованием природного холода водного льда или с помощью замороженной в льдогенераторах с использованием холодильных машин воды.
При плавлении чистого водного льда температуру охлаждаемого вещества можно понизить до 0°С. Для достижения более низких температур используют . В этом случае температура и скрытая теплота плавления зависят от вида соли и ее содержания в смеси. При содержании в смеси 22,4% хлористого натрия температура плавления льдосоляной смеси равна -21,2°С, а скрытая теплота плавления составляет 236,1 кДж/кг.

Применяя в смеси хлористый кальций (29,9%), можно понизить температуру плавления смеси до -55°С, в этом случае r= =214 кДж/кг.

Сублимация - переход вещества из твердого состояния в газообразное, минуя жидкую фазу, с поглощением теплоты. Для охлаждения и замораживания пищевых продуктов, а также их хранения и транспортировки в замороженном состоянии широко используют сублимацию сухого льда (твердой двуокиси углерода). При атмосферном давлении сухой лед, поглощая теплоту из окружающей среды, переходит из твердого состояния в газообразное при температуре -78,9°С. Удельная теплота сублимации r-571 кДж/кг.

Сублимация замороженной воды при атмосферном давлении происходит при сушке белья зимой. Этот процесс лежит в основе промышленной сушки пищевых продуктов, (). Для интенсификации сублимационной сушки в аппаратах (сублиматорах): поддерживают с помощью вакуумных насосов давление ниже атмосферного.

Испарение - процесс парообразования, происходящий со свободной поверхности жидкости. Его физическая природа объясняется вылетом молекул, обладающих: большой скоростью и кинетической энергией теплового движения, из поверхностного слоя. Жидкость при этом охлаждается. В холодильной технике этот эффект используют в градирнях для и в испарительных конденсаторах для передачи теплоты конденсации к воздуху. При атмосферном давлении и температуре О°С скрытая теплота r=2509 кДж/кг, при температуре 100°С r=2257 кДж/кг.

Кипение - процесс интенсивного парообразования на поверхности нагрева за счет поглощения теплоты. Кипение, жидкости при низкой температуре является одним из основных процессов в парокомпрессионных холодильных машинах. Кипящую жидкость называют холодильным агентом (сокращенно - хладагент ), а аппарат, где он кипит, забирая теплоту от охлаждаемого вещества,- испарителем (название не совсем точно отражает суть происходящего в аппарате процесса). Количество теплоты Q, подводимое к кипящей жидкости, определяют по формуле: Q=Mr,
где М - масса жидкости, превратившейся в пар. Кипение однородного («чистого») вещества происходит при постоянной температуре, зависящей от давления. С изменением давления меняется и температура кипения. Зависимость температуры кипения от давления кипения (давления фазового равновесия) изображают кривой, называемой кривой упругости насыщенного пара.

Хладагент R12, имея значительно меньшую скрытую теплоту парообразования, обеспечивает работу холодильной машины при более низких (по сравнению с работой на ) давлениях конденсации, что для конкретных условий может иметь решающее значение.

2. Дросселирование (эффект Джоуля - Томпсона).

Еще один из основных процессов в парокомпрессионных холодильных машинах, заключающийся в падении давления и снижении температуры хладагента при его протекании - через суженное сечение под воздействием разности давлений без совершения внешней работы и теплообмена с окружающей средой.
В узком сечении скорость потока возрастает, кинетическая энергия расходуется на внутреннее трение между молекулами. Это приводит к части жидкости и снижению температуры всего потока. Процесс происходит в регулирующем вентиле или другом дроссельном органе () холодильной машины .

3. Расширение с совершением внешней работы.

Процесс используют в газовых холодильных машинах.
Если на пути потока, двигающегося под воздействием разности давлений, поставить (расширительную машину, в которой поток вращает колесо или толкает поршень), то энергия потока будет совершать внешнюю полезную работу. При этом после детандера одновременно с понижением давления будет снижаться и температура хладагента.

4. Вихревой эффект (эффект Ранка - Хильша).

Создается с помощью специального устройства - вихревой трубы. Основан на разделении теплого и холодного воздуха в закрученном, потоке внутри трубы.

5. Термоэлектрический эффект (эффект Пельтье).

Его используют в термоэлектрических охлаждающих устройствах. Он основан на понижении температуры спаев полупроводников при прохождении через них постоянного электрического тока.
Движение. Теплота Китайгородский Александр Исаакович

Влияние давления на температуру плавления

Если изменить давление, то изменится и температура плавления. С такой же закономерностью мы встречались, когда говорили о кипении. Чем больше давление, тем выше температура кипения. Как правило, это верно и для плавления. Однако имеется небольшое число веществ, которые ведут себя аномально: их температура плавления уменьшается с увеличением давления.

Дело в том, что подавляющее большинство твердых тел плотнее своих жидкостей. Исключение из этого правила составляют как раз те вещества, температура плавления которых изменяется при изменении давления не совсем обычно – например, вода. Лед легче воды, и температура плавления льда понижается при возрастании давления.

Сжатие способствует образованию более плотного состояния. Если твердое тело плотнее жидкого, то сжатие помогает затвердеванию и мешает плавлению. Но если плавление затрудняется сжатием, то это значит, что вещество остается твердым, тогда как раньше при этой температуре оно уже плавилось бы, т.е. при увеличении давления температура плавления растет. В аномальном случае жидкость плотнее твердого тела, и давление помогает образованию жидкости, т.е. понижает температуру плавления.

Влияние давления на температуру плавления много меньше аналогичного эффекта для кипения. Увеличение давления более чем на 100 кГ/см 2 понижает температуру плавления льда на 1 °C.

Отсюда, кстати, видно, как наивно часто встречающееся объяснение скольжения коньков по льду понижением температуры плавления от давления. Давление на лезвие конька во всяком случае не превосходит 100 кГ/см 2 , и снижение температуры плавления по этой причине не может играть роли для конькобежцев.

Из книги Физическая химия: конспект лекций автора Березовчук А В

4. Влияние природы растворителя на скорость электрохимических реакций Замена одного растворителя на другой скажется на каждой из стадий электрохимического процесса. В первую очередь это отразится на процессах сольватации, ассоциации и комплексообразования в

Из книги Новейшая книга фактов. Том 3 [Физика, химия и техника. История и археология. Разное] автора Кондрашов Анатолий Павлович

Из книги Молния и гром автора Стекольников И С

Из книги Движение. Теплота автора Китайгородский Александр Исаакович

Из книги Штурм абсолютного нуля автора Бурмин Генрих Самойлович

7. Получение электричества через влияние Теперь, когда мы знаем, что атомы каждого тела состоят из частиц, содержащих как положительное, так и отрицательное электричество, мы можем объяснить важное явление - получение электричества через влияние. Это поможет нам понять,

Из книги История лазера автора Бертолотти Марио

6. Влияние молнии на работу электрических систем и радио Очень часто молния ударяет в провода линий передач электрической энергии. При этом либо грозовой разряд поражает один из проводов линии и соединяет его с землёю, либо молния соединяет между собой два или даже три

Из книги Твиты о вселенной автора Чаун Маркус

Изменение давления с высотой С изменением высоты давление падает. Впервые это было выяснено французом Перье по поручению Паскаля в 1648 г. Гора Пью де Дом, около которой жил Перье, была высотой 975 м. Измерения показали, что ртуть в торричеллиевой трубке падает при подъеме на

Из книги Атомная проблема автора Рэн Филипп

Зависимость температуры кипения от давления Температура кипения воды равна 100 °C; можно подумать, что это неотъемлемое свойство воды, что вода, где бы и в каких условиях она ни находилась, всегда будет кипеть при 100 °C.Но это не так, и об этом прекрасно осведомлены жители

Из книги автора

1. Почему «обидели» температуру? Ошибка Фаренгейта. Порядок и беспорядок. Когда путь вниз труднее подъема. Ледяной кипяток. Существуют ли на Земле «холодные жидкости»? Длину мы измеряем в метрах, массу - в граммах, время в секундах, а температуру в градусах.Расстояние

Из книги автора

Влияние магнитного поля на спектральные линии В то время, когда были объяснены главные черты спектральных линий. В 1896 г. Питер Зееман (1865-1943) живший в Лейдене (Голландия) открыл, что магнитное поле способно воздействовать на частоты спектральных линий, испускаемых газом,

Из книги автора

135. Как же астрономы измеряют температуру Вселенной? Инфракрасное (ИК) излучение с длиной волны от 700 нм до 1 мм было открыто в 1800 Уильямом Гершелем (1738–1822).Гершель использовал призму, чтобы получить спектр солнечного света, от красного до синего. Он использовал

Из книги автора

Глава X Влияние прогресса в области атомной энергии на экономическую и общественную жизнь Прежде чем дать краткий анализ социальной проблемы, возникшей в связи с открытием атомной энергии, мы в общих чертах рассмотрим экономическую сторону вопроса, связанную со

Одно и тоже вещество в реальном мире в зависимости от окружающих условий может находиться в различных состояниях. Например, вода может быть в виде жидкости, в идее твердого тела - лед, в виде газа - водяной пар.

  • Эти состояния называются агрегатными состояниями вещества.

Молекулы вещества в различных агрегатных состояниях ничем не отличаются друг от друга. Конкретное агрегатное состояние определяется расположением молекул, а так же характером их движения и взаимодействия между собой.

Газ - расстояние между молекулами значительно больше размеров самих молекул. Молекулы в жидкости и в твердом теле расположены достаточно близко друг к другу. В твердых телах еще ближе.

Чтобы изменить агрегатное состояние тела, ему необходимо сообщить некоторую энергию. Например, чтобы перевести воду в пар её надо нагреть.Чтобы пар снова стал водой, он должен отдать энергию.

Переход из твердого состояния в жидкое

Переход вещества из твердого состояние в жидкое называется плавлением. Для того чтобы тело начало плавиться, его необходимо нагреть до определенной температуры. Температура, при которой вещество плавится, называют температурой плавления вещества.

Каждое вещество имеет свою температуру плавления. У каких-то тел она очень низкая, например, у льда. А у каких-то тел температура плавления очень высокая, например, железо. Вообще, плавление кристаллического тела это сложный процесс.

График плавления льда

Ниже на рисунке представлен график плавления кристаллического тела, в данном случае льда.

  • График показывает зависимость температуры льда от времени, которое его нагревают. На вертикально оси отложена температура, по горизонтальной - время.

Из графика, что изначально температура льда была -20 градусов. Потом его начали нагревать. Температура начала расти. Участок АВ это участок нагревания льда. С течением времени, температура увеличилась до 0 градусов. Эта температура считается температурой плавления льда. При этой температуре лед начал плавиться, но при этом перестала возрастать его температура, хотя при этом лед также продолжали нагревать. Участку плавления соответствует участок ВС на графике.

Затем, когда весь лед расплавился и превратился в жидкость, температура воды снова стала увеличиваться. Это показано на графике лучом C. То есть делаем вывод, что во время плавления температура тела не изменяется, вся поступающая энергия идет на плвление.

Каждому известно, что вода может находиться в природе в трех агрегатных состояниях - твердом, жидком и газообразном. При плавлении происходит превращение твердого льда в жидкость, а при дальнейшем нагревании жидкость испаряется, образуя водяной пар. Каковы же условия плавления, кристаллизации, испарения и конденсации воды? При какой температуре тает лед или образуется пар? Об этом мы поговорим в данной статье.

Нельзя сказать, что водяной пар и лед редко встречаются в повседневной жизни. Однако наиболее распространенным является именно жидкое состояние - обычная вода. Специалисты выяснили, что на нашей планете находится более 1 млрд кубических километров воды. Однако не более 3 млн км 3 воды принадлежат пресным водоемам. Достаточно большое количество пресной воды «покоится» в ледниках (около 30 млн кубических километров). Однако растопить лед таких огромных глыб далеко не просто. Остальная же вода соленая, принадлежащая морям Мирового океана.

Вода окружает современного человека повсюду, во время большинства ежедневных процедур. Многие считают, что запасы воды неиссякаемы, и человечество сможет всегда использовать ресурсы гидросферы Земли. Однако это далеко не так. Водные ресурсы нашей планеты постепенно истощаются, и уже через несколько сотен лет пресной воды на Земле может не остаться вовсе. Поэтому абсолютно каждому человеку нужно бережно относиться к пресной воде и экономить ее. Ведь даже в наше время существуют государства, в которых запасы воды катастрофически малы.

Свойства воды

Прежде чем говорить о температуре таяния льда, стоит рассмотреть основные свойства этой уникальной жидкости.

Итак, воде присущи следующие свойства:

  • Отсутствие цвета.
  • Отсутствие запаха.
  • Отсутствие вкуса (однако качественная питьевая вода имеет приятный вкус).
  • Прозрачность.
  • Текучесть.
  • Способность растворять различные вещества (например, соли, щелочи и т. д.).
  • Вода не имеет собственной постоянной формы и способна принимать форму сосуда, в который попадает.
  • Способность очищаться посредством фильтрования.
  • При нагревании вода расширяется, а при охлаждении сжимается.
  • Вода может испаряться, превращаясь в пар, и замерзать, образуя кристаллический лед.

В этом списке представлены основные свойства воды. Теперь разберемся, каковы особенности твердого агрегатного состояния этого вещества, и при какой температуре тает лед.

Лед - это твердое кристаллическое вещество, которое имеет достаточно неустойчивую структуру. Он, как и вода, прозрачен, не имеет цвета и запаха. Также лед обладает такими свойствами, как хрупкость и скользкость; он холодный на ощупь.

Снег также представляет собой замерзшую воду, однако обладает рыхлой структурой и имеет белый цвет. Именно снег каждый год выпадает в большинстве стран мира.

Как снег, так и лед - крайне неустойчивые вещества. Чтобы растопить лед, не нужно прикладывать особых усилий. Когда же он начинает таять?

В природе твердый лед существует только при температуре 0 °C и ниже. Если же температура окружающей среды поднимается и становится больше 0 °C, лед начинает таять.

При температуре таяния льда, при 0 °C, происходит и другой процесс - замерзание, или кристаллизация, жидкой воды.

Данный процесс можно наблюдать всем жителям умеренно континентального климата. Зимой, когда температура на улице опускается ниже 0 °C, достаточно часто выпадает снег, который не тает. А жидкая вода, находившаяся на улицах, замерзает, превращаясь в твердый снег или лед. Весной же можно увидеть обратный процесс. Температура окружающей среды поднимается, поэтому лед и снег тают, образуя многочисленные лужи и грязь, которую можно считать единственным минусом весеннего потепления.

Таким образом, можно сделать вывод, что, при какой температуре начинает таять лед, при такой же температуре начинается и процесс замерзания воды.

Количество теплоты

В такой науке, как физика, часто используется понятие количества теплоты. Данная величина показывает количество энергии, необходимой для нагревания, плавления, кристаллизации, кипения, испарения или конденсации различных веществ. Причем каждый из перечисленных процессов имеет свои особенности. Поговорим о том, какое количество теплоты для нагревания льда требуется в обычных условиях.

Чтобы нагреть лед, нужно сначала его растопить. Для этого необходимо количество теплоты, нужное для плавления твердого вещества. Теплота равняется произведению массы льда на удельную теплоту его плавления (330-345 тысяч Джоулей/кг) и выражается в Джоулях. Допустим, что нам дано 2 кг твердого льда. Таким образом, чтобы его растопить, нам понадобится: 2 кг * 340 кДж/кг = 680 кДж.

После этого нам необходимо нагреть образовавшуюся воду. Количество теплоты для данного процесса рассчитать будет немного сложнее. Для этого нужно знать начальную и конечную температуру нагреваемой воды.

Итак, допустим, что нам требуется нагреть получившуюся в результате плавления льда воду на 50 °C. То есть разница начальной и конечной температуры = 50 °C (начальная температура воды - 0 °C). Тогда следует умножить разность температур на массу воды и на ее удельную теплоемкость, которая равняется 4 200 Дж*кг/°C. То есть количество теплоты, необходимое для нагревания воды, = 2 кг * 50 °C * 4 200 Дж*кг/°C = 420 кДж.

Тогда получаем, что для плавления льда и последующего нагревания получившейся воды нам потребуется: 680 000 Дж + 420 000 Дж = 1 100 000 Джоулей, или 1,1 Мегаджоуль.

Зная, при какой температуре тает лед, можно решить множество непростых задач по физике или химии.

В заключение

Итак, в данной статье мы узнали некоторые факты о воде и о двух ее агрегатных состояниях - твердом и жидком. Водяной пар, однако, представляет собой не менее интересный объект для изучения. Например, в нашей атмосфере содержится приблизительно 25*10 16 кубических метров водяного пара. К тому же, в отличие от замерзания, испарение воды происходит при любой температуре и ускоряется при ее нагревании или при наличии ветра.

Мы узнали, при какой температуре тает лед и замерзает жидкая вода. Такие факты всегда пригодятся нам в повседневной жизни, так как вода окружает нас повсюду. Важно всегда помнить о том, что вода, в особенности пресная, является иссякаемым ресурсом Земли и нуждается в бережном к ней отношении.

Понравилась статья? Поделитесь ей
Наверх